F.Y.B.Sc Sem II Maths Paper I

Sample Questions

 $1.\sum_{n=2}^{\infty}\frac{2}{n^2-1}=\cdots$ a. 5 b. 4 c.3/2 d. none of these $2.\sum_{n=1}^{\infty} \frac{\pi^n}{4^{n+1}} = \cdots$ a. 15 b. divergent c.9 d. none of these $3.\sum_{n=1}^{\infty}\frac{6}{5n^2+6n}$ a. Converges b. diverges c. cannot be convergent d. none of these 4. The series $\sum_{n=1}^{\infty} cosn\pi$ a. Converges to zero b. diverges c. oscillates between -1 and 0

- d. none of these
- 5. if f:[a ,b] \rightarrow R is continuous and $f(x) \in R Q$ then
- a. f is constant function
- b. f is non constant function which attain its bound
- c. f is a function which does not attain its bound

d. none of these

6. 3. Let $f(x) = \sqrt{\sin x}$ and let y^n denote the nth derivative of f(x) at x = 0 then the value of the expression $12y^{(5)}y^{(1)} + 30y^{(4)}y^{(2)} + 20(y^{(3)})^2$ is given by

a) 0

b) 655

c) 999

d) 1729

7. 3. Let $f(x) = \sqrt{1 - x^2}$ and let $y^{(n)}$ denote the nth derivative of f(x) at x = 0 then the value of 6y $^{(1)}y^{(2)}$ + 2 $y^{(3)}$ is

a) -998

b) 0

c) 998

d) -1

- 8. The function tanx is
- a. differentiable on R
- b. not differentiable on R
- c. well defined on R
- d. none of these
- 9. if $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ Then dy/dx=...
- a. y/x

b. x/y

c. $-(y/x)^{1/3}$

d. none of these

10. If
$$y = \frac{3x^{13}+15x^{12}}{x-5}$$
 Then y_{12} is
a. $y_{12} = 3. (12!) + \frac{8(12!)}{(x-5)^{13}}$
b. $y_{12} = \frac{8(12!)}{(x-5)^{13}}$
c. $y_{12} = 12! \frac{1}{(x-5)^{13}}$
d. none of these

11. The function $f(x) = lnx$, $x \in R^+$ is
a. increasing
b. decreasing
c. non increasing
d. non decreasing
12. The point of inflection of $y = x^3 - 6x^2 + 8x + 5$ are
a. x=1
b. x= 2
c. x= -1
d. None of these
13.the maximum and minimum values of $f(x) = 2x^3 - 24x + 4$ is
a. max value= 17 , min value =-28
b. a. max value= 36 , min value =-28
c. max value= 36 , min value =-16
d. max value= 36 , min value =-15
14. if f:I \rightarrow R has local extremum at a point c in I and f is differentiable at x=c then
a. f"(c) is zero
b. f'(c) is not zero
c. f'(c) is zero
d. none of these
15. The critical point of the function $f(x) = 10x^2 + 8x$ is
a2/5
b5/3
c.3/5
d. 5/2

16. 8. For second degree polynomial it is seen that the roots are equal. Then what is the relation between the Rolles point c and the root x?

a) c = x

b) $c = x^2$
c) They are independent
d) c = sin(x)
17. 4. Mean Value theorem is also known as
a) Rolle's Theorem
b) Lagrange's Theorem
c) Taylor Expansion
4) Leibnitz's Theorem
18. 7. What is the value of c which lies in [1, 2] for the function $f(x)=4x$ and $g(x)=3x^2$?
a) 1.6
b) 1.5
c) 1
d) 2
19. 9. Find the value of 'a' if $f(x) = ax^2+32x+4$ is continuous over [-4, 0] and differentiable over (-4, 0) and satisfy the Rolle's theorem. Hence find the point in interval (-2,0) at which its slope of a tangent is zero
a) 2, -2
b) 2, -1
c) 8, -1
d) 8, -2
20. 9. If f(x) = sin(x) cos(x) and g(x) = x ² than find value of $\lim_{x\to 0} \frac{f(x)}{g(x)}$
a) 2
b) 0
c) -1
d) Cannot be found

21. 8. Let Mclaurin series of some f(x) be given recursively, where an denotes the coefficient of x^n in the expansion. Also given $a_n = a_n - 1 / n$ and $a_0 = 1$, which of the following functions could be f(x)?

a) e[×]

b) e^{2x}

c) c + e^x

d) No closed form exists

22. The expansion of log(1+x) is

a.
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

b. $x - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} + \cdots$
c. $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$

d. None of these

23. The approximate value of log(1.2) correct upto 4 decimal places

- a. 0.0125
- b. 0.1823
- c. 0.0013
- d. 0.1254
- 24. The expansion of $log\left(\frac{tanx}{x}\right)$ is

a.1 +
$$\frac{x^2}{3}$$
 + $\frac{7x^4}{90}$ + ...
b. 1 - $\frac{x^2}{3}$ + $\frac{7x^4}{90}$ - ...
c. $\frac{x^2}{3}$ + $\frac{7x^4}{90}$ + ...

- d. None of these
- 25. The expansion of $sin^{-1}x$ is

a.
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \cdots$$

b. $x + (1)^2 \frac{x^3}{3!} + (1)^2 (3)^2 \frac{x^5}{5!} + (1)^2 (3)^2 (5)^2 \frac{x^7}{7!} + \cdots$
c. $1 + (1)^2 \frac{x^3}{3} + (1)^2 (3)^2 \frac{x^5}{5} + (1)^2 (3)^2 (5)^2 \frac{x^7}{7!} + \cdots$

d. None of these